OPTIMIZATION OF A CONVECTION-COOLED COOLING FIN
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We consider the solution of the variational problem of defining the
form of a narrow fin of least cross-sectional area for the convection
dissipation of a given heat flux. The effect of certain parameters on
the optimum shape of the fin is analyzed.

The optimization of fins for convective heat trans-
fer was the subject of several papers [1-3, 6]. It was
shown that fins of variable thickness ensure a greater
rate of heat removal than rectangular fins, and the
profiles of such fins were determined on certain arbi-
trary assumptions. In this paper we consider, as a
follow-up to [4], the weight optimization of straight
fins cooled by convection.

Let us consider the cross section of a narrow fin
heated at its root OA (Fig. 1a). The shape OAB of this
fin yielding the minimum cross-sectional area is tobe
determined for a given input heat flux Qy and tempera-
ture T;. The effect of various factors on the length and
the area of the cross section of the fin is also to be
established. The input equations are those of thermal
conductivity and of heat transfer per unit of fin length:
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The boundary conditions are:
X = Ov Q == Q(),
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The area of the fin cross section is
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Let us use dimensionless variables defined by the
relationships:
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Since a narrow fin is considered, y’ may beneglected
as small in comparison to the unit in formula (2). This
necessitates the fulfillment of the condition

¥ L (4)

Equations (1)—(3) written in dimensionless form are:
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where for z =0, q=1,and 6 =1; forz=1, g=0, 8 =
=67, and u = Uy in-

Mathematically the problem is formulated thus: we
have to find that function u = u(z) which would reduce
functional (7) to its minimum, and then solve Egs. (5)
and (6) for the derived functional relationship u = u(z).

To solve this problem we use Pontryagin's maxi-
mum principle [5]. We express the temperature 0, the
coordinate z, and the area f similarly to [4] interms
of the variable q:
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We construct for this system the Hamilton function
(see [5])
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Fig. 1. Profiles of narrow fins for vari-
ous temperatures of the fin tip, and the
outline (a) of an optimum fin. (Numerals
indicate values of §; for each curve. Rec-
tangular parts of fins for up,i, = 0.5 and

Uypin = 0.2 are indicated by dashedlines.)
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For functional (10) to reach its minimum it is neces-
sary according to [5] that in the domain of acceptable
values of u the Hamiltonian H aftain its maximum with
respect to u for any arbitrary 0 and ¥;. This domain
consists of all u > Uy, ip.

It will be seen from (13) that function ¥3 = const.
From the condition of existence of a minimum of func-
tional (10) it follows that ¥, = 0, and from the trans-
versality and the boundary conditions we have, re-
spectively, $,=1forq =0, andu = up,;,. I follows
from (11) that H can attain its maximum for u = uy, >

provided
‘/"“ _qg)_l' < Umin.

Hence the optimum shape is a straight line, and part
of the fin is of a rectangular form. At a certain q = q*
the inequality sign in (14) is reversed. Function H
attains its maximum at

(14)

2u*
q

(18)

This equation together with Egs. (12) and (8) yields
the problem solution:

Y = C, 67, (18)
where C; is the arbitrary constant determined from
the boundary conditions.

Substituting (16) into (15), we obtain for the depen-
dence of u on the dimensionless temperature 0 that
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Solving together Eqgs. (17) and (8) and using the
boundary conditions, we derive the relationship be-
tween the heat flux q and the temperature 6:

(17)

0 =18} +(1— ) P21a, 18)
where 0] is the temperature of the fin tip with uy;y, =
= 0. The coordinates of the fin cross section are de-
fined by:

q q
2= ﬂzg : dq93 — (19)
6 ; [el+(1— l)q ]
1/2
w16 (1 — 6 g, (20)
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Contours of the fin cross section calculated by Egs.

(19) and (20) are shown in Fig. 1.
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The analytical relationship between z and u can be
established by setting 6; = 0

z \2
u=2(1+—) , 2<C0.
\ 2
The dimensionless length of the fin is [ = 2, and the

temperature variation along it is linear: 6 = 1 + z/2,

A fin having temperature 6] = 0 has the least cross~
sectional area of all optimum fins. In fact, if we cal-
culate the cross-sectional area by formula (10), we

obtain
0
j=—2|
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Thus a fin whose tip is maintained at temperature
01 = 0 has the least cross-sectional area. The depen-
dence of the area of the fin cross section on the tem-
perature of its tip is shown in Fig. 2. The thickness
of the fin root and the steepness u' of its slope are
also affected by the temperature 6;. Since q =1 at the
root of the fin, the effect of 67 on u is defined, in ac-
cordance with Eq. (20), by
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Let us determine the slope u' of the fin confour
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At the root the slope of the fin contour and its thick-
ness increase with increasing 0j:
du 1
z tie
Let us verify the limits of applicability of assump-
tion (4). For simplicity we assume 67 = 0 for which
du/dz = 2. Transforming to dimensional quantities
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Fig. 2. Dependence of the fin
cross—sectional area on tem-
perature 6;. The upper solid
curve is for up,i, = 0.5, and
the lower one for uyip = 0.2;
the dashed curve relates to
the ideal optimum fin for

Umin = 0.



and using condition (4), we find that a fin can be con-
sidered narrow when the following conditions are sat-
isfied:
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The higher the thermal conductivity of the fin material,
the stricter is the assumption of smallness of y'. If
61 > 0, then du/dz — < when g — 0, which means that
at the tip the fin contour becomes vertical, However,
if ;7 = 0, then for g —~ 0 du/dz = 0 also. Thedrawback
of such a fin is the simultaneous vanishing of du/dz
and of the half-thickness u, although from the point of
view of its cross-sectional area this fin is the abso~
lute optimum. The very sharp tip of the fin makes it
technologically impossible.

The necessity to make the end part of the fin of
thickness 2upyin leads to a fin of composite contour.
The curvilinear part of the fin up to u = uy,i, is cal-
culated from formulas (19) and (20), and its rectilinear
part from known heat transfer relationships with the
following boundary conditions (see Fig. la):

21=0, g=¢% 0=0% z=10[, g=0.

The length of the fin rectilinear part is determined as
follows:

P T el T (23)
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The heat flux q* is determined from relationship (20)
by setting u = upj,, and 67 is the temperature which
would obtain at the tip of a sharp fin without an addi-
tional rectilinear part.

Temperature 6* is obtained by setting the heat flux
q = g* in formula (18). The temperature of the finrec-
tilinear tip can be obtained from formula

0 — o [/—B-_q_/l_zl: (24)
6* + q*/’/ Umin

The over-all length of the fin is equal to the sum of
the lengths of the curvilinear and rectilinear parts.
These magnitudes calculated by the formulas given
here are shown in Fig. 3, from which it is seen that
the length of a fin decreases with increasing 6; at a
rate dependent on upyin. The length of a fin with a
narrow tip increases faster than that of a thick fin.
This increase is due to the lengthening of the curvi-
linear part of the fin. A judicious selection of tem~
perature 9; and due consideration to the increase of
thickness u at the fin root and of its length [ are re-
quired in order to reduce the over-all dimensions of
the fin. Temperature 9] also affects the fin cross-
sectional area f, as shown by
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’ \ Fig. 3. Dependence of fin
length on temperature 6;.

4 The solid line relates to
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X uyip = 0.5, and the dashed
line to up iy = 0.2.

12

The dependence of f on temperature §; is shownin
Fig. 2. It is seen that the cross~sectional area has a
mildly sloping minimum in a wide range of tempera-
tures 67, and that this minimum is dependent on the
thickness u of the fin tip. The smaller the thickness
Uy i the smaller the area f and the lower the tem-
perature 67 at which the mildly sloping minimum is
attained. The curves in Figs. 2 and 3 show that a re~
duction of thickness up,;, leads to a decrease of the
area, but for sufficiently small 6; results in a longer
fin (see Fig. 3 for the effect of changing from upy;p, =
= 0.5 to u, 4, = 0.2). When selecting 6 for a specific
case, preference is to be given to obtaining a fin of
either minimum cross-sectional area, or minimum
length 1.

Temperature distribution along a sharp fin for vari-
ous temperatures 0p is given in Fig. 4, which shows
that for 0; decreasing to zero this distribution tends to
be linear. The cross-sectional area of such fing is the
smallest, but the fin is very sharp. Actual fins of such
sharpness camnot be produced. Hence linear distribu-
tion of temperature does not obtain in these.

NOTATION

Q is the heat flux; A is the coefficient of thermal
conductivity; y is the fin half-width; T is the temper-
ature of the fin surface; Tj is the temperature of the
fin root; Ty, is the temperature of the medium; o is
the heat-exchange coefficient; x is the coordinate along
the fin center line; F is the area of the fin cross sec~
tion; q is the dimensionless heat flux; f is the dimen-~
sionless area; z is the dimensionless coordinate along
the fin centerline; u is the dimensionless half-width of
the fin; ¢ is the dimensionless temperature; H is the
Hamilton function; ;1 and ¥, are auxiliary functions;

Iy is the dimensionless length of the fin rectilinear
part; @* is the heat flux at the junction of the twoparts
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Fig. 4. Temperature distributionalong
the length of the fin. Numerals indicate
values of 6;.



of the fin profile; 6] is the temperature of the tip of
the rectilinear part of a fin; and 6; is the temperature
of the sharp tip of a curvilinear fin.
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